#### **HETEROTROPHIC NUTRITION**

This is the type of nutrition in which organisms take in readymade organic food substances made by autotrophs (producers).

## TYPES OF HETEROTROPHIC NUTRITION

- (a) Holozoic nutrition
- (b) Saprotrophic nutrition (Saprophytic nutrition)
- (c) Symbiosis: (i) Parasitism (ii) Mutualism (iii) Commensalism

#### HOLOZOIC NUTRITION

This is the type of nutrition in which complex organic food is taken in and broken down inside the body of an organism into simple soluble molecules which are then absorbed and assimilated.

#### BASIC PROCESSES INVOLVED IN HOLOZOIC NUTRITION

1. Obtaining food: May involve movements to capture or find new food sources from the environment.

2. Ingestion: The intake of food into the body (feeding mechanisms).

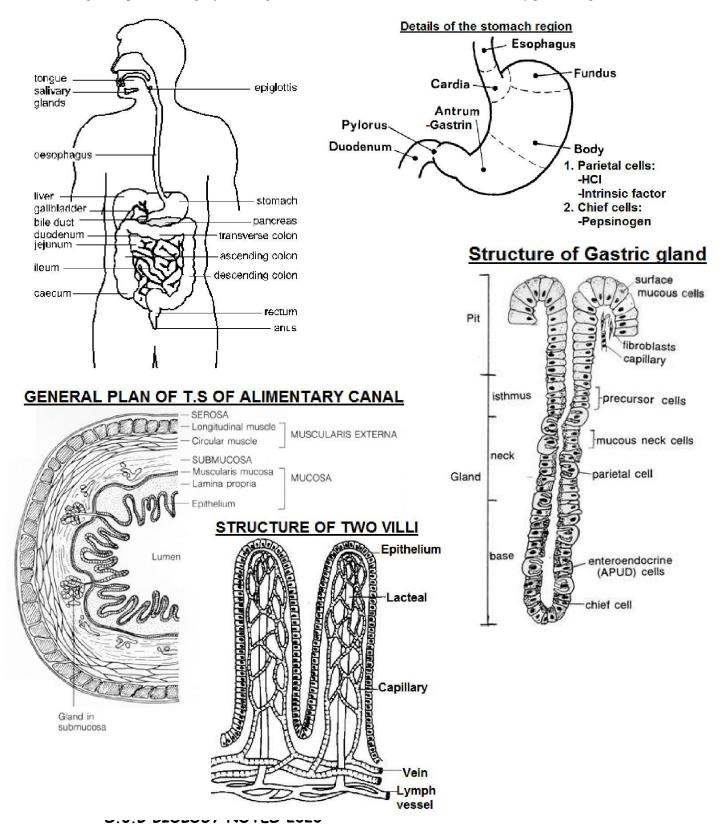
3. *Digestion*: Chemical breakdown (by enzymes) and physical breakdown (by teeth, gizzard, mandibles, radula) of large insoluble molecules of food into small soluble molecules.

4. *Absorption*: The uptake of nutrient molecules into the cells of the digestive tract and, from there, into the bloodstream 5. *Defecation (Egestion)*: elimination of undigested residue.

6. *Assimilation:* The utilization of the absorbed soluble food substances to form energy or materials which are incorporated into the body tissues.

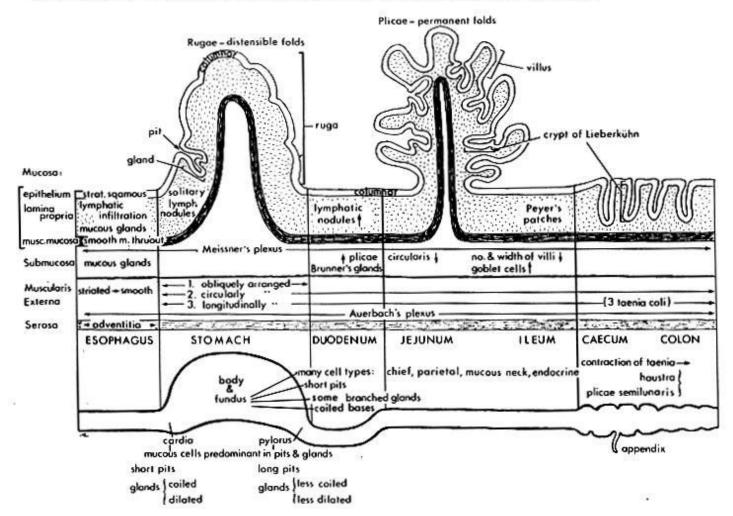
| Nature of<br>food      | Mechanism                                    | Organisms                                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                         |
|------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                      | filter feeding /<br>microphagous<br>feeding; | Whales, sharks, flamingo,<br>herring;                                                                                                      | Body appendages (gills/beaks/keratinous plates) filter<br>planktons/blue green algae suspended in water into body<br>cavity /mouth then digestion occurs.                                                                                                                                                                                           |
| Small                  | Pseudopodial<br>feeding                      | Amoeba                                                                                                                                     | Pseudopodia enclose the food particle to form <b>food</b><br><b>vacuoles</b> which on associating with <b>primary lysosomes</b><br>form <b>secondary lysosomes</b> , and after digestion, soluble<br>products simply/facilitatively diffuse /actively move into<br>the cytoplasm while undigested wastes are egested by<br><b>exocytosis</b> .      |
| particles              | Flagellate feeding                           | Euglena, sponges                                                                                                                           | Flagellar beating directs microscopic food particles to the region of ingestion, then intracellular digestion occurs.                                                                                                                                                                                                                               |
|                        | Ciliary feeding                              | Paramecium, Amphioxus                                                                                                                      | Cilia beating directs microscopic food particles to the region of ingestion, then intracellular digestion occurs.                                                                                                                                                                                                                                   |
|                        | Tentacular feeding                           | Sea cucumber                                                                                                                               | Mucus on tentacles traps food particles                                                                                                                                                                                                                                                                                                             |
|                        | Setous feeding                               | Water flea ( <i>Daphnia</i> ), culex mosquito larvae                                                                                       | Setae on appendages trap and direct small food particles into the digestive system.                                                                                                                                                                                                                                                                 |
|                        | Mucoid feeding                               | Some molluscs                                                                                                                              | Mucus layer traps food particles, later swallowed and new layer formed.                                                                                                                                                                                                                                                                             |
| Fluids or soft tissues | Fluid feeding;                               | Aphids, leeches, fleas, lice,<br>mosquitoes, housefly,<br>vampire bats/<br>Tapeworm, <i>Trypanosoma</i> ;                                  | Nutrient-rich fluid from the living host; is sucked by<br>modified mouth parts;<br>Already digested food is absorbed across the integument;                                                                                                                                                                                                         |
|                        | Substrate feeding<br>/ deposit feeding;      | Insect larvae / earthworms;                                                                                                                | Non-selective swallowing of mud, silt, sand, etc after<br>burrowing their way through the food / organic material;                                                                                                                                                                                                                                  |
| Large<br>particles     | Bulk feeding /<br>macrophagous<br>feeding;   | Land snail, caterpillar,<br>termites, snakes, birds,<br>seals, squids, many<br>mammals, spiders, blowfly<br>larvae, crabs, dragonfly, etc. | May involve scraping and boring (termites, snails) /<br>Capturing and swallowing (snakes, birds, dogfish, seals) /<br>Capturing, chewing and swallowing (squid, mammals) /<br>Capturing, digesting externally and ingesting (spider,<br>starfish, blowfly); using appendages like tentacles/pincers,<br>claws/ poisonous fangs and jaws/ mandibles; |

FEEDING MECHANISMS OF ANIMALS


Page 1 of 26

#### THE HUMAN DIGESTIVE SYSTEM

The human digestive system consists of:


**1. Alimentary canal:** Mouth, throat, oesophagus, stomach, small intestine (duodenum, jejunum and ileum), large intestine (colon, caecum and appendix), rectum and anus.

**2.** Accessory structures: Teeth, tongue, salivary glands, liver, gall balder and pancreas. These are organs, glands, and tissues that enable digestive processes, e.g. by secreting fluids /chemicals, but the food does not actually pass through them.



Page 2 of 26

# VERTICAL SECTION THROUGH THE ALIMENTARY CANAL



#### COMPARISON OF HISTOLOGY OF GASTROINTESTINAL TRACT REGIONS

| WALL LAYER                                                                                                                                                                                                                           | STOMACH                                                                                                | DUODENUM                                                                                         | ILEUM                       | COLON                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|--|
|                                                                                                                                                                                                                                      | Areolar connective tissue, s                                                                           | ame composition as mesenteries                                                                   |                             |                         |  |
| Serosa (Adventitia)                                                                                                                                                                                                                  | 1) It is called <b>serosa</b> when the outermost layer lies adjacent to the peritoneal cavity.         |                                                                                                  |                             |                         |  |
|                                                                                                                                                                                                                                      | It is called <b>adventitia</b> when the outermost layer is attached to surrounding tissue.             |                                                                                                  |                             |                         |  |
| Muscularis externa                                                                                                                                                                                                                   | Consists of three muscle lay                                                                           | vers: (i) inner oblique layer (ii) middl                                                         | le circular layer (iii) out | ter longitudinal layer  |  |
|                                                                                                                                                                                                                                      | Network of unmyelinated a                                                                              | nerve fibers and ganglia between Mus                                                             | scularis externa longitudin | al and circular muscles |  |
|                                                                                                                                                                                                                                      | Brings about peristalsis wh                                                                            | en stimulated by pressure of food in t                                                           | the gut.                    |                         |  |
| Auerbach'                                                                                                                                                                                                                            | Receives impulses from the                                                                             | vagus nerve                                                                                      |                             |                         |  |
| (Myenteric plexus)                                                                                                                                                                                                                   | Control of nerve impulses is                                                                           | s involuntary                                                                                    |                             |                         |  |
|                                                                                                                                                                                                                                      | Promotes secretion of intest                                                                           | inal juices                                                                                      |                             |                         |  |
|                                                                                                                                                                                                                                      | Causes sphincter muscles to                                                                            | r muscles to open, thus permitting food to pass from one part of the digestive system to another |                             |                         |  |
|                                                                                                                                                                                                                                      | Consists of loose connective                                                                           | e tissue, collagen, large arteries and v                                                         | eins, lymph vessels and ne  | erves                   |  |
|                                                                                                                                                                                                                                      | Brunner's                                                                                              | Brunner'spresentgla                                                                              | Brunner'                    | Brunner's               |  |
|                                                                                                                                                                                                                                      | absent.                                                                                                | Brunner's gla                                                                                    | absent.                     | absent.                 |  |
| Submucosa                                                                                                                                                                                                                            | No goblet cells                                                                                        | alkaline mucus to neutralize                                                                     | Goblet cells                |                         |  |
| Submucosa                                                                                                                                                                                                                            | _                                                                                                      | acidic chyme from the stomach                                                                    | present                     |                         |  |
|                                                                                                                                                                                                                                      |                                                                                                        | Brunner'sglandsare                                                                               |                             |                         |  |
|                                                                                                                                                                                                                                      |                                                                                                        | compound, tubular, mucous                                                                        |                             |                         |  |
|                                                                                                                                                                                                                                      |                                                                                                        | Goblet cells present                                                                             |                             |                         |  |
| Meissner'                                                                                                                                                                                                                            | Meissner' Nerve network of unmyelinated nerve fibres and associated ganglia located with the submucosa |                                                                                                  |                             | icosa                   |  |
| (Submucosal plexus) It is believed to work against the myenteric plexus to control the muscular contractions more finely.<br>In intestines, it works with Auerbach'sinproducingplexusperistaltic waves and increasing digestive secr |                                                                                                        |                                                                                                  | re finely.                  |                         |  |
|                                                                                                                                                                                                                                      |                                                                                                        |                                                                                                  | igestive secretions.        |                         |  |

Page 3 of 26

.

| WALL LAYER                                                                                             | STOMACH                                                                                                                                                                                                           | DUODENUM                                     | ILEUM                            | COLON                |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------|
| Mucosa                                                                                                 | 1. Muscularis mucosa:                                                                                                                                                                                             |                                              |                                  |                      |
|                                                                                                        | Thin layer of smooth muscle at the boundary between mucosa and submucosa.                                                                                                                                         |                                              |                                  |                      |
|                                                                                                        | Contains both circular and longitudinal muscles                                                                                                                                                                   |                                              |                                  |                      |
|                                                                                                        | Functionally, the Muscularis mucosa presumably causes stirring at mucosal surface for increased secretion and                                                                                                     |                                              |                                  | sed secretion and    |
|                                                                                                        | nutrient absorption                                                                                                                                                                                               |                                              |                                  |                      |
|                                                                                                        | 2. Lamina propria:                                                                                                                                                                                                |                                              |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   | e connective tissue (fibroblasts, lymph      | nocytes, plasma cells, mae       | crophages,           |
|                                                                                                        | eosinophilic leucocytes and mas                                                                                                                                                                                   | ·                                            |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   | ous cells with <b>immune function</b> to pr  |                                  | lary line of defense |
|                                                                                                        |                                                                                                                                                                                                                   | nphoid structures located in the ileum       | l.                               |                      |
|                                                                                                        |                                                                                                                                                                                                                   | lacteals (lymphatic capillaries).            |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   | li may include smooth muscle fibers.         |                                  |                      |
|                                                                                                        | In <b>oral cavity</b> and <b>oesophagus</b> , lamina propria is located immediately beneath a stratified squamous epith                                                                                           |                                              |                                  | amous epithelium     |
|                                                                                                        | 3. Surface epithelium:                                                                                                                                                                                            |                                              |                                  |                      |
|                                                                                                        | Mucosal epithelium is highly differentiated along the several regions of the GI tract.                                                                                                                            |                                              |                                  |                      |
|                                                                                                        | At the <b>upper</b> and <b>lower</b> ends of the tract, the epithelium is protective, <i>stratified squamous</i> .                                                                                                |                                              |                                  |                      |
|                                                                                                        | Along the <b>lining of the stomach, small intestine, and colon</b> , the epithelium is <i>simple columnar</i><br>In the stomach, surface epithelium contains mucous cells that secrete protective, alkaline mucus |                                              |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   |                                              |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   | are permanent folds in the mucosa sup        | pported by a core of subn        | nucosa. Plicae       |
|                                                                                                        | increase the absorptive surface a                                                                                                                                                                                 |                                              |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   | entations in surface epithelium of stor      |                                  |                      |
| (c) Intestinal crypts (crypts of Lieberkühn) contain secretory Paneth cells at the deep end, which sec |                                                                                                                                                                                                                   |                                              | which secrete                    |                      |
|                                                                                                        | lysosomal enzymes that contribute to protecting cells in the crypt lining.<br>(d) Villi are very small, typically densely-packed, invaginations of a mucosa that increase the surface a                           |                                              |                                  | c c                  |
|                                                                                                        |                                                                                                                                                                                                                   |                                              |                                  |                      |
|                                                                                                        |                                                                                                                                                                                                                   | villi, <b>duodenum</b> –many, leaf-like vill | i, <b>neum</b> –iew, iinger-like | e viiii.             |
|                                                                                                        | (e) <b>Rugae</b> are distensible folds                                                                                                                                                                            | n the gastric mucosa.                        |                                  |                      |

## SECRETIONS FROM CELLS LOCATED IN THE GASTRIC WALL

The secretions of the mucous cells, chief cells, and parietal cells are known collectively as *gastric juice*, whose components include: *mucus, pepsinogen, hydrochloric acid* and *intrinsic factor* 

| Type of Cell                                           | Secretion                     | Stimulus for secretion                     | Function                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|-------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mucous Cells<br>(i) Mucous surface cells               | Mucus                         | Tonic secretion, with irritation of mucosa | Physical barrier between lumen and stomach lining.                                                                                                                                                                                                                                                                                                    |
| (ii) Mucous neck cells                                 | Bicarbonate                   | Secreted with mucus                        | Buffers gastric acid to prevent damage to epithelium                                                                                                                                                                                                                                                                                                  |
|                                                        | Pepsinogen<br>Gastric lipase  | Acetylcholine, acid                        | Pepsin digests protein, including <b>collagen</b> Digests lipids                                                                                                                                                                                                                                                                                      |
| Chief / Peptic / zymogenic cells                       | Prochymosin<br>(Prorennin)    | secretion.                                 | Rennin curdles soluble Caseinogen (milk protein) into<br>insoluble casein whose slow flow enables digestion                                                                                                                                                                                                                                           |
|                                                        | Hydrochloric acid             |                                            | <ul> <li>(i) Activates pepsinogen to pepsin, Prorennin to rennin</li> <li>(ii) Kills bacteria. Only <i>Helicobacter pylori</i>, that cause <i>gastritis</i> and gastric ulcers survive in the stomach</li> </ul>                                                                                                                                      |
| Parietal / oxyntic cells                               | Intrinsic factor              | Acetylcholine, gastrin,<br>histamine       | Complexes with vitamin B <sub>12</sub> to enable absorption of<br>Vitamin B <sub>12</sub> necessary for red blood cell formation<br>Vitamin B12 is a cofactor of enzymes which<br>synthesise tetrahydrofolic acid, which, in turn, is<br>needed for the synthesis of DNA components<br>Little <i>intrinsic factor</i> causes <b>pernicious anemia</b> |
| Enteroendocrine cells (APUD-cells                      | s: amine precursor uptake     | and decarboxylation cells)                 | Enterna more jueror cuases per increas anoma                                                                                                                                                                                                                                                                                                          |
| (a) G cells<br>(Gastrin-producing cells)               | Gastrin hormone               | Acetylcholine, peptides, and amino acids   | <ul><li>(i) Stimulates secretion of gastric juice</li><li>(ii) Increases contractions of gastro-intestinal tract</li><li>(iii) Relaxes the pyloric sphincter.</li></ul>                                                                                                                                                                               |
| (b) D cells<br>(Somatostatin-producing cells )         | Somatostatin<br>hormone       | Acid in stomach                            | <ul> <li>(i) Inhibits stomach secretion of gastrin and HCl</li> <li>(ii) Inhibits duodenal secretion of secretin and cholecystokinin</li> <li>(iii) Inhibits pancreas secretion of glucagon</li> </ul>                                                                                                                                                |
| (c)VIP-producing cells (vasoactive intestinal peptide) | Vasoactive intestinal peptide | Distension of the stomach wall             | <ul><li>(i) Induces smooth muscle relaxation</li><li>(ii) Inhibits gastric acid secretion</li><li>(iii) Stimulates pepsinogen secretion by chief cells</li></ul>                                                                                                                                                                                      |
| (d) Enterochromaffin cells                             | Histamine                     | Acetylcholine, gastrin                     | Stimulates gastric acid secretion                                                                                                                                                                                                                                                                                                                     |

| (Serot | onin-containing cells) | l . | 1 | I | 1 |
|--------|------------------------|-----|---|---|---|
| (Berou | Jim-containing cens)   |     |   |   |   |
|        |                        |     |   |   |   |

Page 4 of 26

#### DIGESTION

Digestion is the process by which large food molecules are broken down into small soluble molecules which can be absorbed and assimilated into the tissues of the body.

Digestion includes two types of processes:

**Mechanical processes:** which include the chewing and grinding of food by the teeth and also the churning and mixing of the contents of the stomach to expose more surface area to the enzymes that finish the digestive process.

Chemical processes: which include hydrolysis action of digestive enzymes, bile, acids.

#### **DIGESTION IN THE MOUTH**

It starts with chewing (mastication), which breaks food into pieces small enough to be swallowed and also increases the surface area of food to digestive enzymes.

The sight, taste, smell and thought of food induces salivary glands to secrete saliva, a watery fluid with PH of 6.8 to 7.0. During chewing, saliva mixes with food and the different saliva components perform different functions:

(i) Salivary amylase (ptyalin) enzyme catalyses the breakdown of amylose of cooked starch into maltose.

(ii) Water moistens food and binding it together for swallowing

(iii) Mucin binds and lubricates food; to enable swallowing.

(iv) Chloride ions activate salivary amylase

(v) Lysozymes kill bacteria in the buccal cavity.

## NOTE:

Amount of **amylase** secreted in saliva depends on **amount of starch** the animal regularly feeds on in diet.

1. Amylase is usually absent in the saliva of carnivores because of absence of cooked starch in the diet.

2. In separate human groups, the relative amounts of amylase (in arbitrary units) produced in saliva were as follows:

Tswana: 248, Bushmen 22, European: 101. Which human group's diet is largely made of

#### SWALLOWING

This is a reflex action, which lasts less than 10 seconds.

#### STAGES OF SWALLOWING

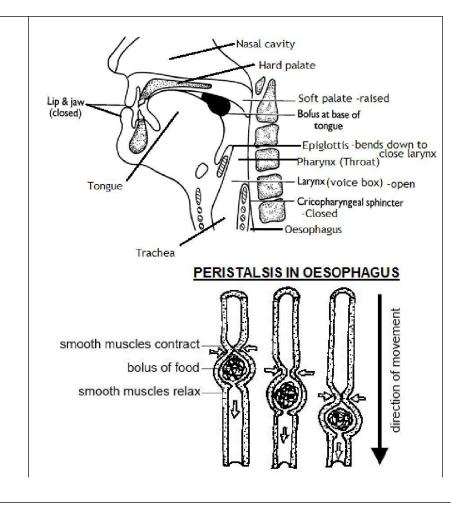
**Tongue** contracts to push the bolus towards the throat, forcing the **soft palate** upwards to close the **nasopharynx** 

**Larynx** and **hyoid bone** move anteriorly and upwards.

**Epiglottis** bends downwards to close **larynx** (trachea entrance) to prevent food from entering the trachea.

**NB:** Any food that enters into trachea is expelled out by coughing reflex.

Breathing briefly stops due to closure of **glottis**.


Pharynx shortens.

#### Upper oesophageal sphincter

(Cricopharyngeal sphincter) relaxes, to allow the bolus enter into **oesophagus** 

In oesophagus the food bolus moves by **peristalsis**, a sequence of wave-like contractions that squeeze food down the oesophagus.

Lower oesophageal sphincter (cardiac sphincter) relaxes to allow food into stomach.



#### DIGESTION IN THE STOMACH

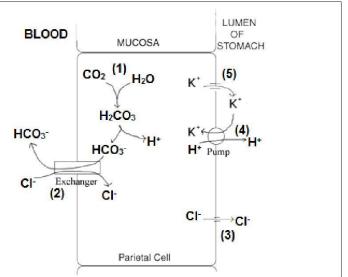
Arrival of food in the stomach stimulates secretion of **gastrin hormone** from **G-cells** into the blood stream, which stimulates the **gastric glands** to secrete **gastric juice**, whose components include: *mucus*, *pepsinogen*, *hydrochloric acid* and *intrinsic factor*.

The components of gastric juice are secreted by different cells and perform different roles as follows:

| Type of Cell Secretion                                                    |                    | Function                                                            |
|---------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|
| Mucous cells Mucus                                                        |                    | Forms a barrier at the stomach lining, to prevent tissue digestion. |
| <ul><li>(i) Mucous surface cells</li><li>(ii) Mucous neck cells</li></ul> | Bicarbonate        | Buffers gastric acid to prevent damage to epithelium                |
|                                                                           | Pepsinogen         | Pepsinogen on activation to pepsin digests protein to polypeptides  |
| Chief / Dentie / zymogenie                                                | Gastric lipase     | Digests lipids to fatty acids and glycerol                          |
| Chief / Peptic / zymogenic<br>cells                                       | Prochymosin        | Rennin coagulates soluble milk protein Caseinogen into insoluble    |
| cens                                                                      | (Prorennin)        | casein in babies, whose slowed flow enables digestion by pepsin.    |
|                                                                           | Gastric lipase     | Gastric lipase weakly hydrolyses fats to fatty acids and glycerol   |
|                                                                           |                    | (i) Activates pepsinogen to pepsin, Prorennin to rennin             |
|                                                                           | TTdue-shlenin enid | (ii) Kills most bacteria in the stomach.                            |
|                                                                           | Hydrochloric acid  | (iii) Provides optimum acidic pH for pepsin to hydrolyse proteins   |
| Deviatel / eventie cella                                                  |                    | into polypeptides.                                                  |
| Parietal / oxyntic cells                                                  |                    | (v) Stops the working of salivary amylase enzyme                    |
|                                                                           |                    | Forms a complex which enables absorption of vitamin B12 that is     |
|                                                                           | Intrinsic factor   | necessary in red blood cell formation                               |
|                                                                           |                    | Little intrinsic factor causes pernicious anemia                    |

#### MECHANISM OF HYDROCHLORIC ACID SECRETION IN PARIETAL CELLS

Hydrochloric acid is produced by **parietal** cells through a complex series of reactions.


Catalysed by the enzyme **carbonic anhydrase**, **carbon dioxide** (which diffused from capillaries) reacts with **water** to form **carbonic acid**, which dissociates into **bicarbonate ion** and **hydrogen ion**.

**Bicarbonate ion** is transported into the blood stream by an **ion exchange molecule** in plasma membrane which exchanges **bicarbonate ions** exiting parietal cells for **chloride ions** entering.

**Hydrogen ions** are **actively pumped** into the **duct** of **gastric gland** and the **negatively charged chloride ions diffuse** with the **positively charged hydrogen ions**.

**Potassium ions** are **counter pumped** into the parietal cell in exchange for **hydrogen ions**.

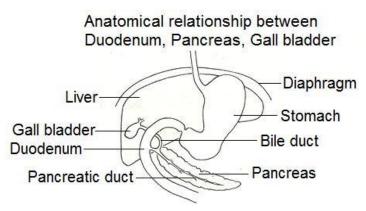
The net result is production of hydrochloric acid in the **parietal cells** and its secretion into the **duct** of **gastric gland**.



Due to churning by the stomach wall (alternate contractions and relaxations), **VIP-producing cells** are stimulated to secrete the hormone called **vasoactive intestinal peptide**, which causes relaxation of **pyloric sphincter muscle** to allow the semi solid **chyme** flow from the stomach into the duodenum, after a maximum of about **four hours**.

Page 6 of 26

#### **DIGESTION IN THE DUODENUM**


Arrival of **partially digested**, **acid food** mixture in the duodenum stimulates **endocrine cells** in duodenal walls to secrete the hormones: **Secretin, Enterogastrone, Cholecystokinin (CCK)** formerly **Cholecystokinin-Pancreozymin (CCK-PZ)**, **Villikinin** and **Enterocrinin**. These hormones coordinate activities of the stomach, pancreas, gall bladder and ileum as follows:

| Hormone                                                                   | Stimulus for secretion                                                 | Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secretin hormone                                                          | Acid chyme in<br>duodenum                                              | Stimulates the <b>liver</b> to secrete <b>bile</b> into the <b>gall bladder</b> .<br>Stimulates pancreatic secretion of <b>non-enzymatic</b> substances ( <b>hydrogen</b><br><b>carbonate ions</b> ) from <b>acinar cells.</b> HCO <sub>3</sub> <sup>-</sup> neutralise the acid from the<br>stomach to provide an alkaline pH optimum for pancreatic enzymes.<br>Inhibits secretion of <b>HCl</b> by <b>oxyntic cells</b> as chyme leaves the stomach.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Enterogastrone<br>hormone                                                 | Acid and fat in the duodenum                                           | Reduces stomach motility<br>Inhibits oxyntic cells from secreting hydrochloric acid in order to provide<br>an optimum pH for pancreatic enzymes.<br>Signals the stomach to empty slowly when fat is present, allowing much<br>time for digestion of fat already emptied.<br><b>NOTE</b> : High fat diets stimulate enterogastrone production, which prolongs<br>food stay in the stomach, and is therefore useful in treating duodenal ulcer.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cholecystokinin<br>hormone<br>(CCK) formerly<br>called<br>Cholecystokinin | Partially digested <b>fat</b><br>and <b>protein</b> in the<br>duodenum | <ul> <li>Stimulates contraction of gall bladder to release bile into duodenum.</li> <li>(i) Bile salts (sodium glycocholate) emulsify fats i.e. fats physically break into droplets due to reduced surface tension, which increases their surface area</li> <li>Stimulates the pancreas to secrete pancreatic enzymes:</li> <li>(i) Pancreatic amylase which catalyses the hydrolysis of starch into maltose</li> <li>(ii) Enterokinase, a non-digestive enzyme which activates Trypsinogen to Trypsin.</li> <li>(iii) Trypsinogen, which is activated by enterokinase to Trypsin.</li> <li>(1) Catalyses hydrolysis of polypeptides to peptides.</li> <li>(2) Activates chymotrypsinogen to chymotrypsin.</li> <li>(iii) Chymotrypsinogen, which is activated to chymotrypsin by Trypsin.</li> <li>(by Trypsin catalyses hydrolysis of casein / polypeptides into peptides.</li> </ul> |
| Villikinin                                                                | Alkaline pH in the                                                     | Increases peristalsis in the small intestine and ileum villi movements, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Motilin)                                                                 | duodenum                                                               | preparation for incoming food.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### NOTE:

Some sources indicate that enterogastrone refers to any of the hormones secreted by the mucosa of the duodenum in the lower gastrointestinal tract in response to dietary lipids to inhibit churning e.g. (i) Secretin (ii) Cholecystokinin
 All proteolytic (protein digesting) enzymes along the gut are secreted in inactive (precursor) form to prevent autolysis (self-digestion) of gut tissues, which are protein in nature.

The churning action of duodenal walls turns the semi-solid **Chyme** into a thin, milky-looking alkaline fluid called **Chyle**.



#### **DIGESTION IN THE ILEUM**

**Distention** of the small intestine by food / **tactile stimulus** / **irritating stimulus** stimulates the secretion of **intestinal juice** (**Succus entericus**), which consists of a mixture of substances from **crypts of Lieberkühn** and **Brunner's**.Someglandofthe components of **Succus entericus** include the following enzymes:

*Peptidases*: catalyse hydrolysis of **peptides** into **amino acids**, thereby completing the digestion of proteins.

*Nucleotidases*: catalyse hydrolysis of **nucleotides** into **phosphoric acid**, **nitrogenous bases** and **pentose sugars**.

- **Maltase**: catalyses hydrolysis of **maltose** into **glucose** molecules, thereby completing starch digestion.
- *Sucrase (invertase)*: catalyses hydrolysis of **sucrose** into **glucose** and **fructose** molecules.

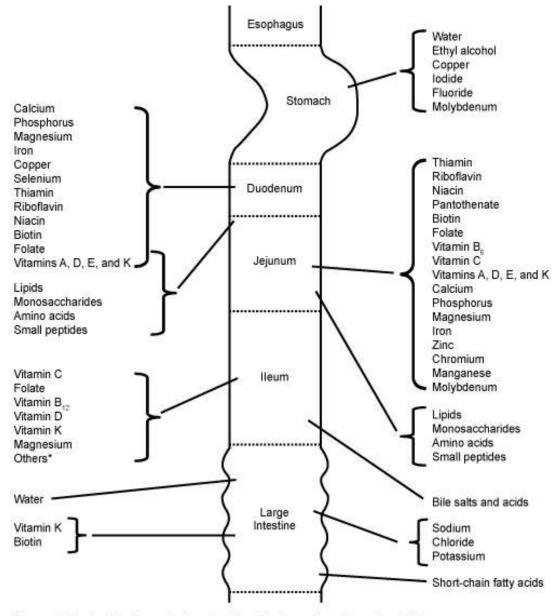
*Lactase*: catalyses hydrolysis of **lactose** into **glucose** and **galactose** molecules.

*Intestinal lipase*: catalyses hydrolysis of **lipids** into **fatty acids** and **glycerol**.

Intestinal amylase: catalyses hydrolysis of starch into maltose.

Page 7 of 26

#### FOOD ABSORPTION


It is the process by which soluble food substances are absorbed across the **gut epithelium** into **blood circulatory system** or **lymphatic system** to be carried to all body cells.

During absorption, substances move as follows:

(i) From intestinal lumen across the free end / apical end / mucosal end of the absorbing cell.

(ii) Across the base / **basilar** end / **serosal** end of absorbing cell into the **subcellular space**, and finally into **blood circulatory system** or **lymphatic system**.

**NOTE:** Substances entering at the apical surface may be metabolized or within the cell or may appear at the basilar surface when changed into another form.



#### MAIN SITES OF NUTRIENT ABSORPTION

\*Many additional nutrients may be absorbed from the ileum depending on transit time.

Page 8 of 26

#### PROCESSES INVOLVED IN ABSORBING DIGESTED FOOD

(1) Simple diffusion (2) Facilitated diffusion (3) Active transport: Direct active transport and Secondary active transport

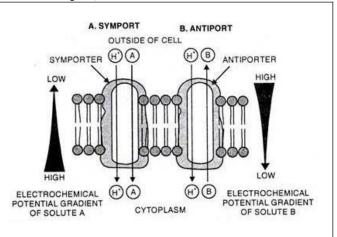
### SECONDARY ACTIVE TRANSPORT

A form of active transport across a biological membrane in which a transporter protein couples the movement of an ion (e.g.  $Na^+$  or  $H^+$ ) **down** its electrochemical gradient to the **uphill** movement of another molecule or ion **against** a concentration/electrochemical gradient. Thus, energy stored in the electrochemical gradient of an ion is used to drive the transport of another solute against a concentration or electrochemical gradient.

#### TYPES OF SECONDARY ACTIVE TRANSPORT

1. Cotransport (also known as Symport) 2. Exchange (also known as Antiport)

**1. COTRANSPORT:** The direction of transport is the same for both the driving ion and driven ion/molecule. *Examples*:


(i) The Na<sup>+</sup>/glucose cotransporter in **enterocytes** (small intestine epithelial cell) and kidney proximal tubule epithelial cells simultaneously transports  $2 \text{ Na}^+$  ions and 1 glucose molecule into the cell across the plasma membrane.

(ii) The  $H^+/dipeptide$  or tripeptide cotransporter in epithelial cells of small intestine couples the downhill movement of  $H^+$  across the plasma membrane to the uphill transport of dipeptides and tripeptides into the cell against a concentration gradient.

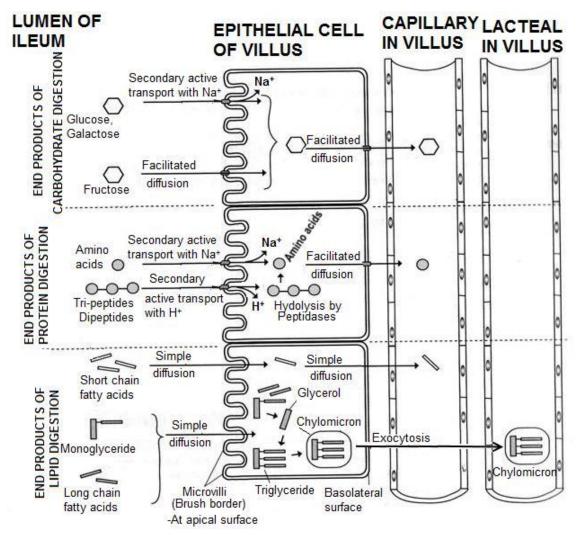
**2. EXCHANGE:** The driving ion and driven ion/molecule move in opposite directions.

#### Example:

The Na<sup>+</sup>/Ca<sup>2+</sup> exchanger in cardiac muscle cells transports 3 Na<sup>+</sup> ions into the cell in exchange for 1 Ca<sup>2+</sup> ion transported out of the cell.



#### MECHANISMS OF ABSORBING DIGESTED FOOD IN THE ILEUM


| Digested food              | Mechanism                             | Description of the mechanism                                                                                                          |
|----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                            | Secondary active                      | Glucose and galactose are <b>cotransported</b> into epithelial cells of                                                               |
| Glucose and galactose      | <b>transport</b> with Na <sup>+</sup> | villi with $Na^+$ ions, then exported into blood capillaries by                                                                       |
|                            | (Cotransport with Na <sup>+</sup> )   | facilitated diffusion.                                                                                                                |
|                            |                                       | Fructose moves into epithelial cells of villi by <b>facilitated</b>                                                                   |
| Fructose                   | Facilitated diffusion                 | diffusion, then exported into blood capillaries by facilitated                                                                        |
|                            |                                       | diffusion.                                                                                                                            |
|                            | Secondary active                      | Amino acids are <b>cotransported</b> from intestinal lumen into small                                                                 |
| Amino acids                | transport with Na <sup>+</sup>        | intestinal epithelial cells with $Na^+$ ions, then exported to                                                                        |
|                            | (Cotransport with Na <sup>+</sup> )   | capillaries by <b>facilitated diffusion</b> .                                                                                         |
|                            |                                       | Oligopeptides (dipeptides and tripeptides) are cotransported                                                                          |
| Dipeptides and Tripeptides | Secondary active                      | from intestinal lumen into villi epithelial cells with <b>protons</b> ( <b>H</b> +)                                                   |
| (Oligopeptides)            | <b>transport</b> with $H^+$           | Oligopeptides are then hydrolysed by cytoplasmic peptidases                                                                           |
| (ongopeptides)             | (Cotransport with H <sup>+</sup> )    | into <b>amino acids</b> , which are exported from the villi epithelial cells into blood capillaries by <b>facilitated diffusion</b> . |
|                            |                                       | Short chain fatty acids move into epithelial cells of villi by                                                                        |
| Short chain fatty acids    | Simple diffusion                      | simple diffusion, then are exported into blood capillaries by                                                                         |
|                            |                                       | simple diffusion.                                                                                                                     |
|                            |                                       | Monoglycerides and long chain fatty acids diffuse into columnar                                                                       |
| Monoglycerides and Long    | ong Simple diffusion                  | epithelia of villi, <b>recombine</b> to form <b>lipids</b> , then combine with                                                        |
| chain fatty acids          | Simple unfusion                       | proteins to form water soluble lipoproteins called                                                                                    |
|                            |                                       | chylomicrons, which are exported by exocytosis to lacteals.                                                                           |

## NOTE:

**1.** Absorption of **whole proteins** occurs only in a few circumstances e.g. **newborns** when suckling absorb **antibodies** (**immunoglobulins**) from the colostralmother'smilk)toacquiremilk**passive immunity**(.

2. In adults, absorption of whole protein can cause allergic reaction due to presence of foreign protein in blood.





#### ILEUM –THE MAJOR SITE FOR ABSORPTION Adaptations of the ileum to absorption of food

- (i) Ileum is long and highly folded for increased surface area in absorption of soluble food substances.
- (ii) Ileum has **numerous** finger-like projections called **villi** which **increase** the **surface area** for **absorption** of soluble food.
- (iii) Ileum epithelial cells have **microvilli** which further **increase** the **surface area** for efficient food absorption.
- (iv) Ileum epithelium is thin to reduce diffusion distance for soluble food substances to allow fast rate of diffusion.
- (v) Ileum epithelium is permeable to allow movement of soluble food substances across with minimum resistance.
- (vi) Ileum villi have **dense network of blood capillaries** to **rapidly carry away digested food** from the absorption area which **maintains** a **steep diffusion gradient**.
- (vii) Ileum villi have permeable lacteal, a branch of the lymphatic system for carrying away fats
- (viii) Ileum **epithelial cells** have **numerous mitochondria** to generate ATP energy for active transport of some ions.
- (ix) Ileum inner surface is lined with a lot of mucus to prevent autolysis (self-digestion) by proteolytic enzymes.

Page 11 of 26

#### COLON

In the colon, there is mainly absorption of:

(i) Water into the blood capillaries by osmosis.

(ii) Vitamins Biotin (B7) and K, which is synthesised by Escherichia coli bacteria that live in the colon.

(iii)  $Na^+$ ,  $Cl^-$  and  $K^+$ 

NOTE: The colon wall contains mucus secreting cells for lubricating the movement of undigested food through the colon.

#### APPENDIX AND CAECUM

In ruminants like cattle and in non-ruminants like rabbits, **mutualistic bacteria** secrete **cellulase enzyme** which digests **cellulose** to **glucose**, which is lost along with faeces. In the process described as **coprophagy** (**coprophagia**), rabbits eat own faecal pellets while dung beetles feed on cow dung to enable absorption of glucose at the ileum. In humans, appendix and caecum have no obvious role.

#### RECTUM

In the rectum, food is stored temporarily to enable osmotic absorption of water into blood capillaries.

#### CONTROL OF DIGESTION IN HUMANS

A combination of **hormonal** and **nervous stimulations** and **inhibitions** of the gut that **regulate** the secretion of digestive juices in the gut.

#### IMPORTANCE OF CONTROL OF DIGESTION

(i) Secretion of digestive juices depends on respiratory energy, therefore unnecessary secretion must be prevented to avoid wastage of respiratory substrates.

(ii) Secretion of proteolytic enzymes in inactive form prevents autolysis (self-digestion of tissues).

#### MECHANISMS OF CONTROLLING DIGESTION IN HUMANS

Involves a combination of **hormonal** and **nervous; stimulations** and **inhibitions** of the gut; that **regulate** the secretion of digestive juices in the gut;

The digestive juices secreted include **saliva** in the buccal cavity; **gastric** juice in the stomach; **pancreatic** juice and **bile** in the duodenum; **intestinal** juice in the ileum;

#### **CONTROL IN THE MOUTH**

Sight / smell / thought of food **stimulate** conditioned reflexes involving the **cerebral cortex**, **hypothalamus** and **medulla oblongata**; which **stimulate** salivary glands to secrete saliva.

Contact of food with tongue taste receptors **stimulates** nerve impulses via sensory neurons to the **hypothalamus** and **medulla oblongata;** relayed along motor neurons to **stimulate** salivary glands to secrete saliva. -Salivary amylase in saliva causes hydrolysis of starch to maltose.

Loss of appetite / depression inhibit cerebral cortex; parasympathetic centre is not stimulated, no secretion of saliva;

#### CONTROL IN THE STOMACH

Occurs in 3 phases: cephalic; gastric; and intestinal phases;

#### Cephalic phase / Nervous phase:

It occurs before food enters the stomach;

Sight / smell / thought of food **stimulate** conditioned and unconditioned reflexes; involving the **cerebral cortex**, **hypothalamus** and **medulla oblongata**; which **stimulate** the **vagus nerve** causing the release of **acetylcholine**; which **stimulates** the secretion of the **hormone gastrin**; whose effects are:

(i) Stimulates secretion of gastric juice.

(ii) Increases contractions of gastro-intestinal tract

(iii) Relaxes the pyloric sphincter to let in bolus of food from the gullet;

Loss of appetite / depression inhibit cerebral cortex; parasympathetic centre is not stimulated, no gastric secretion;

### NOTE:

Secretion of nervous phase lasts for about one hour during which gastric juice secretion reaches a maximum, after which there is a rapid decrease from 1 hour to 1.5 hours.

Therefore, nervous secretion is: (i) short lasting and (ii) rapid as compared to the hormonal phase.

Page 12 of 26

#### Gastric phase:

Arrival of food bolus distends / stretches the stomach wall which activates **stretch receptors** to fire impulses to the **Meissner's** in the stomach**plexus** walltocause the following effects:

(i) Stimulate local secretory reflexes in the stomach wall to activate gastric glands secrete **pepsinogen** and **HCl**;

(ii) Stimulate reflexes in the medulla, via the **vagus nerve** to activate gastric glands wall to secrete **pepsinogen** and **HCl**; (iii) Stimulate **enteroendocrine** cells / G-cells to secrete **gastrin** hormone; which stimulates secretion of **gastric juice**;

(iii) Stimulate enteroendocrine cells / G-cells to secrete gastrin normone; which stimulates secretion of gastric juice; (iv) Stimulate enteroendocrine /enterochromaffin cells to secrete histamine; which activates secretion of gastric juice;

Partially digested proteins especially peptides / decrease in pH activates chemoreceptors, which stimulate G-cells to secrete gastrin hormone; which stimulates secretion of gastric juice;

Excessive acidity (PH of less than 2) inhibits G-cells hence gastric juice secretion reduces;

Emotional upset activates sympathetic nervous system whose effects override the parasympathetic nervous system;

#### NOTE:

The gastric glands are stimulated by hormones to secrete gastric juice for about four hours.

Therefore, hormonal secretion is: (i) longer lasting and (ii) gradual as compared to the cephalic phase.

#### Intestinal phase:

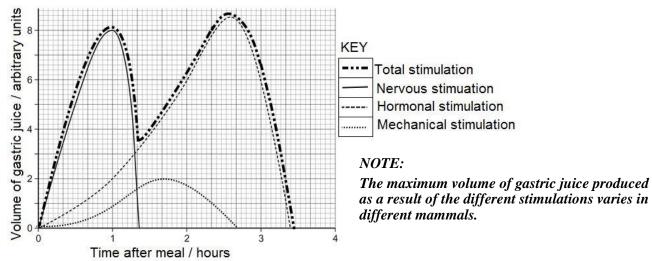
Distension of duodenum / presence of acid chyme / partially digested food stimulates the secretion of **intestinal** (**enteric**) **gastrin hormone**; which stimulates secretion of **gastric juice** in the stomach;

Distension of duodenum / presence of acid chyme / fatty acids / irritants / in the duodenum stimulates the secretion of Intestinal hormones:

(i) Secretin; which stimulates the release of bile from the liver and hydrogen bicarbonate ions in pancreatic juice;

(ii) Cholecystokinin; which stimulates the pancreas to secrete its enzymes;

(iii) Enterogastrone; which inhibits/suppresses gastric activity (any further secretion of acid by the stomach);


(iv) Vasoactive intestinal peptide inhibits gastric acid secretion.

Distension of duodenum / presence of acid chyme / fatty acids / irritants / in the duodenum initiates gastric-inhibitory impulses in the enterogastric reflex causing suppression of gastric activity; and emptying of stomach;

#### **CONTROL IN THE ILEUM**

Contact of food with intestinal lining stimulates the intestinal glands; to secrete intestinal juice composed of enzymes responsible for completion of digestion of food substrates;

Variations in volume of gastric juice produced by nervous, hormonal and mechanical stimulations with time after eating food



#### **OBSERVATIONS / DESCRIPTION**

**1.** Volume of gastric juice produced during nervous stimulation increases rapidly from 0 hour to a maximum at 1 hour, then decreases rapidly and ceases at 1.5 hours. Nervous secretion is: (i) shorter lasting (ii) instantly rapid as compared to hormonal and mechanical phases.

**2.** Volume of gastric juice produced during hormonal stimulation increases gradually from 0 hour to 1 hour, then increases rapidly to a maximum at about 2.5 hours, then decreases rapidly and ceases at about 3.3 hours.

Therefore, hormonal secretion is: (i) longer lasting and (ii) initially gradual as compared to the cephalic phase.

3. Volume of gastric juice produced during mechanical stimulation (food stretching stomach and duodenal wall) increases gradually from 0

hour to 0.7 hour, then increases rapidly to a maximum at about 1.6 hours, then decreases rapidly and ceases at about 2.6 hours

Page 13 of 26

#### **ASSIMULATION OF FOOD**

*Assimilation*: The process by which simple soluble food substances are absorbed and used by body cells in the various ways. The products of digestion are brought directly through the hepatic portal vein to liver, which controls the amount of nutrients released into the mainstream blood circulatory system.

Assimilation supports growth, development, body renewal, and storing up of reserves used as a source of energy. **Metabolism:** Chemical processes within cells of an organism. It involves:

(i) Catabolism: Break down of complex molecules into simpler molecules, with release of energy.

(ii) Anabolism: Assembly / building up of complex molecules from simple molecules using energy.

| FOOD                        | HOW ABSORBED FOOD IS USED IN THE BODY                                                                                                                                                                                                                                                                                                                                                                  | HOW BODY DEALS WITH EXCESS                                                                                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glucose                     | ATP synthesis in respiration<br>Formation of glycoproteins involved in cell to cell<br>recognition mechanisms.<br>For production of mucus<br>Excess carbohydrates are stored in the form of glycogen in<br>the liver and muscles.                                                                                                                                                                      | Stored in the liver as glycogen.<br>Excess carbohydrates may be converted<br>into fats for storage.                                                      |
| Amino acids                 | Formation of protoplasm of cells during growth<br>Production of enzymes and antibodies<br>Formation of body structures such as hairs, nails, hooves,<br>cell membranes<br>Oxidised to release ATP energy during severe starvation i.e.<br>in the absence of glucose and fats.<br>Formation of hormones e.g. insulin<br>Formation of plasma membrane components e.g.<br>glycoproteins, channel proteins | Deaminated in the liver to form urea,<br>which is expelled by kidneys.<br>Some amino acids are <b>transaminated</b><br>to produce a different amino acid |
| Fatty acids<br>and glycerol | The long chain fatty acids are desaturated in the liver and<br>are then broken down to carbon dioxide and water by<br>successive oxidations.<br>Some of it can be converted into glucose<br>Some used to form various structures which are components<br>of cells e.g. phospholipids                                                                                                                   | Stored as fat under the skin                                                                                                                             |

Page 14 of 26

#### FOOD AND DIET IN HUMANS

Food: Any substance taken in to nourish the body and sustain life. Food provides energy and nutrients.
Nutrient: is a substance which is needed for growth, repair and metabolism.
The three main nutrients are: (1) carbohydrates (2) proteins (3) lipids (fats and oils)

#### MEASURING FOOD ENERGY CONTENT

The energy content in a food sample can be measured by simple calorimetry.

Calorimetry: Measuring the amount of heat given out or taken in by a process, such as the combustion of a fuel.

#### **PROCEDURE OF CALORIMETRY**

(i) Pour cold water into a boiling tube / small beaker / metal can

(ii) Record the starting temperature of the water

(iii) Measure accurately the mass of the food sample in a crucible (iv) Heat the food until it catches fire.

(v) Heat the water using the flame from the burning food

(vi) Record the final temperature of the water and calculate the temperature difference.

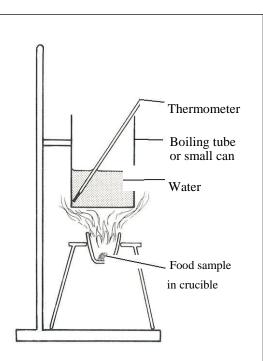
**NB**: The experiment above can be done more accurately using a **food calorimeter**, though it costs more money to purchase.

#### Calculations

Work out the energy transferred to the water in joules or in calories **Energy transferred** (J) =

Mass of water (g)  $\times$  4.2 (J/g°C)  $\times$  temperature increase (°C)

# Note: 4.2kJ (1 cal.) of energy are required to raise the temperature of 1 kg of water through $1^{0}$ C


#### Worked example

When 0.5 g of food is burned,  $10 \text{ cm}^3$  of water warms up by 20°C. What is the energy content of the food in J/g?

#### Solution

1 cm<sup>3</sup> of water has a mass of 1 g Energy transferred to water =  $10 \times 4.2 \times 20 = 840$ J Energy content of food =  $840 \div 0.5 = 1680$  J/g

To find the energy value of sugar, 1g of sugar is burnt in a crucible, the flame produced is used to heat 100 g water in a metal can and the rise in temperature of the water measured.



#### **COMPARISON OF ENERGY VALUES**

*Carbohydrate*: 1 gram contains 17 kJ *Fat*: 1 gram contains 39 kJ *Protein*: 1 gram contains 18 Kj

#### **ENERGY UNITS**

Energy units are joules, no longer calories 4.18 joules = 1 calorie 1000 calories = 1 kilocalorie (kcal.) = 1 Cal 1000 joule = 1 kJ (kilojoule) = 1 joule 1000 kJ = MJ (megajoule)

#### PRECAUTIONS

When comparing different foods, it is important to carry out a fair test by keeping other variables constant:

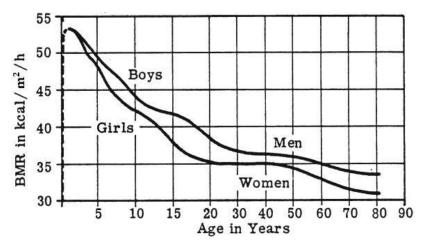
(1) Starting temperature of water (2) temperature increase (3) distance of the flame from the boiling tube More reliable results can be obtained by repeating the experiment.

#### SOURCES OF ERROR IN CALORIMETRY

- (a) Inaccurate weighing of sugar
- (b) Incomplete combustion of the sugar
- (c) Inability to measure the temperature difference accurately enough
- (d) Heat from the burning sugar escaping without heating the water.

#### **ENERGY-FOOD INTAKE AND CONSUMPTION**

The body needs energy for three main reasons:


(i) Maintain the **basal metabolic rate** (**BMR**) –minimum energy a body requires at rest to perform vital functions like beating of the heart, breathing, peristalsis, impulse transmission, synthesis of biological molecules like proteins, etc. (ii) Sustain body activities like muscle contraction during movement, locomotion, etc.

(iii) Generation of heat to maintain body temperature at about  $37^{0}$ C

#### NOTE: BMR accounts for about 65% of the energy used in the body each day.

#### FACTORS WHICH DETERMINE BASAL METABOLIC RATE

Age, Sex, Body mass, Nature of physical activity engaged in, Muscle mass, Diet, Drugs, Environmental factors e.g. temperature, Hormonal factors e.g. during pregnancy and lactation, Genetics.



# (a) (i) Factors shown in the graph, which affect BMR: Age and sex

# (ii) Other factors not shown in the graph, which affect BMR:

Muscle mass, Body size, level of physical activity, and Pregnancy and lactation, Diet, Drugs, Environmental factors e.g. temperature, Hormonal factors e.g. during pregnancy and lactation, Genetics

## Explanation of variation in BMR with the factors in (a) (i) above.

#### Variation in BMR with sex

At about 2.5 years and below, BMR in males is equivalent to BMR in females **because** infants have basically identical composition of carbohydrates, fats and protein.

From about 2.5 years throughout life, BMR is slightly higher in males than in females **because** males usually have more body muscle than females while females usually have more fat than males per unit body mass and surface area. The more muscle tissue in the body, the more energy the body needs just to function e.g. to conduct impulses and biosynthesis compared to fat cells that largely store fat, with little biosynthesis.

#### Variation in BMR with age

Infants and children have relatively high BMR than old-aged adults **because** at infancy and childhood much of the energy consumed is used in biosynthesis of cellular components required for growth. At adulthood, biosynthesis is greatly reduced since growth has stopped. From the age BMR was **first** determined to about 20 years of age, BMR decreases rapidly, then remains constant up to about 50 years of age and thereafter decreases slowly.

From infancy to maturity at 20 years of age, biosynthesis of cellular components required for growth decreases rapidly, then remains constant by middle age until 50 years of age and thereafter decreases slowly, partly because of loss of muscle tissue, and also because of hormonal and neurological changes. Only repair and replacement of worn out cells occurs at slow rate by adulthood.

#### Explanation of variation in BMR with the factors in (a) (ii) above.

**Muscle mass** (amount of muscle tissue in the body). Muscle requires more energy to function than fat. The more muscle tissue in the body, the more energy the body needs just to exist.

**Body size:** Larger bodies tend to have a higher BMR because they usually have larger internal organs and fluid volume to maintain. Taller people have a larger skin surface, therefore have higher metabolism to maintain a constant temperature. **Genetics:** Genotypes and genetic disorders determine the rate of BMR.

**Physical activity:** Regular exercise increases muscle mass and causes the body to burn kilojoules at a faster rate, even when at rest. **Hormonal factors (e.g. during pregnancy and lactation):** Hormonal imbalances caused by certain conditions, including hypo- and hyperthyroidism, can affect the metabolism. Expectant and lactating mothers require more energy to support foetal and baby growth respectively.

**Environmental factors (e.g. temperature):** Weather can also have an effect on body metabolism; if it is very cold or very hot, the body works harder to maintain its normal temperature and that increases the metabolic rate.

**Drug content in the body:** Caffeine and nicotine can increase your metabolic rate, while medications including some antidepressants and anabolic steroids can contribute to weight gain regardless of what you eat.

**Diet:** Certain aspects diet can also affect of metabolismone's.g. in adequate intake of iodine for optimal thyroid function can slow down body metabolism.

#### **BALANCED DIET**

*Balanced diet* is one which contains the correct proportions and quantity of protein, carbohydrate, lipids, vitamins, mineral salts, water and dietary fibre/roughage required to maintain health.

Mainly, carbohydrates and lipids are for energy production, proteins are for growth and repair, vitamins and mineral salts are for protection of good health, water is a solvent while roughage stimulates peristalsis to prevent constipation. An unbalanced diet can lead to **deficiency diseases**.

#### EFFECTS OF UNDERFEEDING AND OVERFEEDING

If energy output exceeds energy input, carbohydrate reserves (glycogen) and fat reserves (adipose tissue) are respired and the person's body mass decreases. When carbohydrate and away.

If energy intake exceeds energy usage over a period of time, carbohydrate is turned into fa increases leading to **obesity** (overweight).

**Disadvantages of obesity:** (1) the extra mass causes a person to get tired quickly (2) increases chances of stroke/heart attack. How an obese person can lose weight: (1) Eating less energy food (2) Taking more exercises to increase energy output

#### **BODY MASS INDEX (BMI)**

This is one of the ways of determining whether a person is **underweight** or **overweight**. BMI can be calculated using the formula:

 $BMI = \frac{Mass in kg}{(Height in m)^2}$ 

Qn. Calculate the BMI of a female of mass 69 kg and height of 1.67m

Another way of determining whether a person is underweight or overweight is to use a graph showing the relationship between height and body mass.

#### CHANGES IN BODY ENERGY RESERVES DURING STARVATION

**Starvation** results from the inadequate intake of nutrients or the inability to metabolize or absorb nutrients.

#### CAUSES OF STARVATION

Prolonged fasting, anorexia, deprivation, or disease *SYMPTOMS OF STARVATION* 

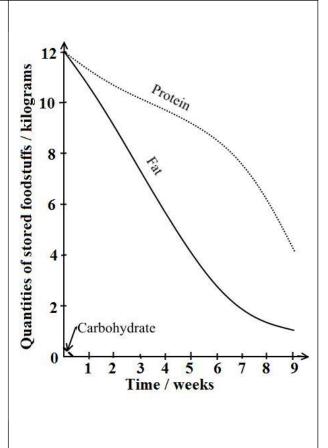
Weight loss, dehydration, apathy, listlessness, withdrawal, increased susceptibility to infectious disease, discoloured hair color, flaky skin, and massive edema in abdomen and lower limbs causing the abdomen to appear bloated.

#### ADVERSE EFFECTS OF STARVATION

(i) Marasmus: occurs on account of extreme energy deficiency, typically from inadequate amounts of protein and calories.

(ii) **Kwashiorkor:** is related to marasmus, affects children who are proteinenergy deficient, and can result in edema (fluidic inflammation) and an enlarged fatty liver — resulting in the counterintuitive distending of bellies, giving the illusory impression that starving children are well fed.

#### INTERVENTIONS AGAINST STARVATION


Rehydration and feeding the starving person low-bulk food with much proteins, much energy and fortified with vitamins and minerals. Avoid foods high in bulk but low in protein content

#### DESCRIPTION OF CHANGES IN ENERGY RESERVES

Glycogen, proteins, and fats are all metabolized during starvation. Exhaustion of blood glucose stimulates **glucagon** secretion and **insulin** secretion is inhibited.

Within the first 24 hours, the very low glycogen amount stored in the liver and muscles decreases rapidly to depletion **because** glycogen is broken down into glucose for oxidation to release energy, while the amounts of fats and protein remain high.

Anaerobic breakdown of glycogen in skeletal muscle is also stimulated.



Page 18 of 26

Within week 1, a few hours after depletion of carbohydrate/glycogen, the amount of fats decreases rapidly while the amount of protein decreases gradually until about 6 weeks of starvation.

This is because fats are hydrolysed rapidly into fatty acids and glycerol while oxidation of amino acids releases energy. The liver metabolizes fatty acids into **ketone bodies** that are degraded to release energy. Accumulation of ketones causes **ketosis**, by condition characterised by blood becoming **acidic** 

Fatty acids in skeletal muscles are broken down to release energy, thus decreasing the use of glucose by tissues other than the brain. Glycerol is converted into small amount of glucose, but most of the glucose is formed from the amino acids of proteins. The brain begins to use ketone bodies, as wells as glucose, for energy.

Dependency on fats for energy release decreases the demand for glucose, protein breakdown reduces but does not stop. The liver degrades **non-essential proteins** into glucose for the brain in a process called **gluconeogenesis**, which involves converting carbon skeletons into pyruvate or Krebs'cycle intermediates and excreting amino groups from the body as urea.

From 6 weeks to 8 weeks, amount of fat decreases slowly to very low levels, while amount of protein decreases rapidly. This is because as fat reserves / stores are getting depleted, metabolism of fats to release energy occurs gradually and the body begins to rapidly break down **essential proteins**, leading to loss of liver and heart function as these organs are broken down for fuel metabolizing proteins as the major energy source.

animals, but doesn't kill t

Muscles, the largest source of protein in the body, are rapidly depleted.

#### NUTRITION IN CARNIVORES AND HERBIVORES

(a) Carnivorous animals: are either predators or scavengers whose diet consists of mainly flesh obtained from preys.

- (i) **Predator**: An animal that hunts and kills animals for food.
- (*ii*) *Prey:* An animal that is hunted and killed for food.
- (iii) Scavenger: An animal that eats dead.
- (b) Herbivore: An animal whose diet is mainly vegetation
- (i) Grazers: Mainly feed on grass
- (ii) Browsers: Mainly feed on leaves of shrubs and trees

|                    | Carnivore                                                 | Herbivore                                              |
|--------------------|-----------------------------------------------------------|--------------------------------------------------------|
| Adaptations for    | Well-developed sense of smell for locating prey           | Upper jaw lacks incisors to provide a hard pad against |
| finding and        | Fast moving to outpace and capture prey                   | which lower incisors press and cut grass.              |
| capturing prey     | Well-built body to manipulate and capture prey.           | Tongue is highly muscular for manipulating food        |
| (carnivores) or    | Very sharp claws for gripping and killing prey.           | during chewing.                                        |
| grazing /          | Keen eye sight for locating prey from a distance          |                                                        |
| browsing           | Foot pads enable stealth movement to ambush prey.         |                                                        |
| (herbivores)       | Long, sticky tongue for reaching distant prey e.g. toads. |                                                        |
|                    | Elongated canines for digging up prey e.g. walrus         |                                                        |
| Adaptations for    | Sharp pointed canines for tearing the fresh of prey       | Molars and premolars are ridged for maximum            |
| ingesting the food | Flat molars to crush prey                                 | grinding of hard cellulose materials.                  |
|                    | Incisors pointed for nipping and biting.                  | Molars and premolars have large surface area for       |
|                    | Carnassial teeth present for shearing flesh.              | maximum grinding of the hard cellulose materials.      |
|                    | Upper jaw wider than lower jaw to facilitate shearing.    | Articulation of lower jaw permits lateral movement to  |
|                    | Up-and-down jaw action only prevents lateral              | enable maximum grinding of food.                       |
|                    | movement hence reducing the danger of dislocation         | Well-developed jaw muscles provide much grinding       |
|                    | Powerful jaw muscles provide much force for chewing       | power for crushing cellulose materials.                |
|                    |                                                           | Between the front and                                  |
|                    |                                                           | called diastema for separating crushed grass from      |
|                    |                                                           | uncrushed grass for effective chewing.                 |
| Adaptations for    | No cellulose in diet hence less developed caecum and      | Ruminant stomachs are four chambered to derive         |
| digesting the food | appendix to reduce on body weight to enable fast running. | maximum nourishment from grass.                        |
|                    | Relatively short alimentary canal reduces weight, since   | Mutualistic bacteria in caecum and appendix enable     |
|                    | diet is entirely protein.                                 | chemical digestion of cellulose into glucose.          |
|                    |                                                           | Relatively long alimentary canal to digest vegetation  |

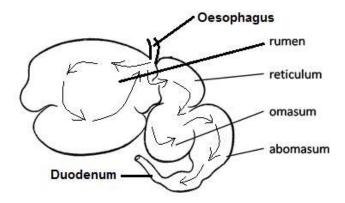
#### DIFFERENCES BETWEEN CARNIVORES AND HERBIVORES RELATED TO NUTRITION

| Carnivores                                          | Herbivores                                                   |
|-----------------------------------------------------|--------------------------------------------------------------|
| Closed pulp cavity in teeth                         | Open pulp cavity in teeth                                    |
| Upper jaw incisors present                          | Upper jaw incisors absent in most herbivores                 |
| Canines present and well developed                  | Canines small or absent to create a diastema                 |
| Carnassial teeth present                            | Carnassial teeth absent                                      |
| Cheek teeth pointed                                 | Cheek teeth flattened with enamel ridges and dentine grooves |
| Articulation of lower jaw prevents lateral movement | Articulation of lower jaw permits lateral movement           |
| Relatively short alimentary canal                   | Relatively long alimentary canal                             |
| No cellulose digestion                              | Cellulose digestion occurs in caecum                         |

#### EXAMPLES OF SYMBIOTIC ASSOCIATIONS IN ANIMALS

**Symbiosis:** Ecological relationship between two or more organisms living together with some form of feeding relationship. **Mutualism:** Close relationship where two organisms of different species depend on each other for reciprocal benefit, without any harm e.g. pollination flowers by insects, **Trichonympha** and **termites**, cellulase producing bacteria and herbivores, etc. **Commensalism:** Loose relationship in which two organisms of different species live together, only one organism benefits while the other remains unharmed e.g. sea anemone and clown fish.

**Parasitism:** Close relationship between organisms of different species in which one organism called **parasite** obtains nutrients from and harms a larger living organism called host.


#### DIGESTION IN RUMINANT MAMMALS

Ruminants: are the mammals, which have a 4-chambered stomach for the digestion of plant based food.

**Rumination** involves regurgitation of fermented grass known as cud, chewing and re-chewing it again to further break down plant matter and stimulate digestion.

Ruminating mammals include cattle, goats, sheep, giraffes, deer, camels, antelope, etc.

Four-chambered stomach showing food movement during feeding



1. Rumen (Paunch): Bacteria and protozoa in the rumen secrete cellulase enzyme which breaks down cellulose into glucose which undergoes fermentation to form organic acids, carbon dioxide and ethane. The fermentation process produces heat that keeps ruminants warm.

**2. Reticulum (Honeycomb bag):** Here any foreign objects that may have been accidentally swallowed with food settle out in the **honeycomb** structure of the

Reticulum is sometimes called "hardware sto

**3. Omasum (Psalterium / Manyplies):** Absorbs water from food and also absorbs more nutrients called volatile fatty acids that supply ruminants with energy.

**4. Abomasum (Reed / True stomach):** Here, the food particles are digested by hydrochloric acid in the same way it occurs in human stomachs. The remaining particles are then passed on to the small intestine where most of the nutrients are absorbed by the body and made available to the ruminant.

#### **CELLULOSE DIGESTION IN TERMITES**

Guts of wood-eating termites contain a micro-organism called **Trichonympha**, which secretes **cellulase enzyme** to digest cellulose in wood. The termite absorbs some of the products of digestion (**glucose**), while **Trichonympha** gets sheltered.

#### **CELLULOSE DIGESTION IN RABBITS (NON RUMINANTS)**

The caecum and appendix of a rabbit contain bacteria that secrete **cellulase enzyme** for digesting **cellulose** into **glucose**. The herbivore gains **glucose** while the bacteria get **shelter**.

In the process described as **coprophagy** (**coprophagia**), rabbits eat own faecal pellets while dung beetles feed on cow dung to enable absorption of glucose at the ileum.

#### PARASITISM

Close relationship between organisms of different species in which one organism called parasite obtains nutrients from and

harms a larger living organism called host.

Page 21 of 26

| Challenges / Dangers faced by ectoparasites                      | Challenges / Dangers faced by endoparasites                      |
|------------------------------------------------------------------|------------------------------------------------------------------|
| Failure to cling on the host to avoid being dislodged.           | Failure to penetrate the host                                    |
| Failure to obtain nutritive molecules from the host.             | Failure to obtain nutritive molecules from the host.             |
| Failure to find the right host for dispersal to their final host | Destruction by the digestive enzymes and immune                  |
|                                                                  | responses of the hosts.                                          |
|                                                                  | Complete elimination or extinction.                              |
|                                                                  | Fluctuating environment e.g. low oxygen tensions, excess         |
|                                                                  | heat, solute concentration, darkness etc.                        |
|                                                                  | Failure to find the right host for dispersal to their final host |
| GENERAL ADAPTATIONS OF PARASITES                                 |                                                                  |

| GENERAL ADAPTATIONS OF PARASITES              |                                              |                                                 |  |
|-----------------------------------------------|----------------------------------------------|-------------------------------------------------|--|
| Structural adaptations                        | Physiological adaptations                    | Reproductive adaptations                        |  |
| Possession of penetrative devices for host    | Production of enzymes to digest the          | Some are hermaphrodites with the ability        |  |
| entry e.g. fungal haustoria, cutting teeth in | host'stissuesduring penetration into the     | to carry out self fertilisation to increase the |  |
| hook worms Ancylostoma duodenale)             | host e.g. fungi and plasmodium               | rate of reproduction e.g. Fasciola, Taenia.     |  |
| Possession of nutrient suckers e.g. leech     | Production of anticoagulants by blood        | Some asexually reproduce for high rate          |  |
| Development of digestive-resistant outer      | feeding parasitic animals such as            | of reproduction to avoid extinction.            |  |
| covering to avoid host'se.g.                  | mosquitoes and ticks to avoid blood clotting | Release of sexually mature forms of the         |  |
| Ascaris and Taenia etc.                       | during feeding.                              | parasites as free living organisms e.g. in      |  |
| Camouflaging morphology to increase           | Highly tolerant to fluctuating               | some parasitic animals such as the horse        |  |
| survival chances e.g. brown ticks on brown    | environment e.g. anaerobic respiration in    | hair worms                                      |  |
| cattle.                                       | areas of low oxygen tensions, high           | Production of large number of infective         |  |
| Possession of specialised mouth parts in      | temperatures, darkness and pH changes in     | agents such as eggs, cysts, and spores which    |  |
| some ecto-parasites to suck hosts e.g. sharp  | places where they live e.g. most             | increase survival chances to avoid              |  |
| stylets in aphids and tsetse flies.           | endoparasites.                               | extinction e.g. tape worms.                     |  |
| Possession of specialised haustorial          | Rapid means of escape which increases        | Development of reproductive bodies that         |  |
| structures in Cuscuta (Dodder plants) for     | their chances of survival e.g. fleas and     | are highly resistant when out of the host to    |  |
| obtaining nutrients from the host             | mosquitoes.                                  | survive adverse conditions e.g. cysts in        |  |
| Degeneration of non-essential organs e.g.     | Production of much mucus for resisting       | amoeba, fungal spores, etc.                     |  |
| no feeding organs, no locomotory organs,      | digestion by host's enzymes.                 | Use of intermediate host (vector) for their     |  |
| no alimentary canal to reduce body size and   | Some endoparasites produce chemicals to      | transfer to primary host e.g. plasmodium in     |  |
| fit in intestines /blood vessels and for      | protect themselves against the immune        | female anopheles mosquito to man.               |  |
| reducing energy expenditure on such organs    | response of the host.                        | Some parasites localise the strategic           |  |
| for example Fasciola hepatica (liver fluke),  |                                              | points for propagation to the next host e.g.    |  |
| tape worm, hook worm etc.                     |                                              | HIV which causes AIDS is localised in the       |  |
|                                               |                                              | sex organs.                                     |  |
|                                               |                                              | Some use hereditary transmission for            |  |
|                                               |                                              | increased spreading i.e. some parasites         |  |
|                                               |                                              | infect the ovary of primary host which lays     |  |
|                                               |                                              | parasite infected eggs.                         |  |

### **COMMON PARASITES**

*Definitive host (final host / primary host)*: a host in which a parasite attains sexual maturity.

*Intermediate host (secondary host):* a host in which a parasite passes one or more of its asexual stages; usually designated first and second, if there is more than one.

| Dhylum/division                                        | Parasite                          | Host           |                              | Effect on primory heat             |
|--------------------------------------------------------|-----------------------------------|----------------|------------------------------|------------------------------------|
| Phylum/division                                        |                                   | Primary        | Secondary                    | Effect on primary host             |
|                                                        | Fasciola hepatica (liver Fluke)   | Sheep, cattle  | Pond snails                  | Liver rot                          |
| Platyhelminthes                                        | Schistosoma mansoni (blood fluke) | Humans         | Pigs                         | Schistosomiasis (Bilharzia)        |
| riatynenninnes                                         | Taenia solium (Pork tape worm)    | Humans         | Pigs                         | Taeniasis; Anaemia, Weight loss    |
|                                                        | Taenia saginata (Cattle tapeworm) | Humans         | Cattle                       | Abdominal (intestinal) pain        |
| Nematoda                                               | Ascaris lumbricoides (roundworm)  | Humans         | None                         | Ascariasis, Intestinal obstruction |
| Spermatophyta Dodder plant (Cuscuta)                   | Nettle, clover,                   | None           | Damages tissues causing      |                                    |
| (Seed plants)                                          | d plants)                         | tomato, potato | None                         | secondary infections               |
| Spermatophyta<br>(Seed plants)Striga sp. (witch weeds) | Maize, millet,                    | None           | Stunted growth, wilting, and |                                    |
|                                                        | groundnut, etc.                   | None           | chlorosis                    |                                    |
| Heterokontophyta                                       | Phytophthora infestans            | Tomato leaves  | None                         | Late blight of potato and tomato   |
|                                                        |                                   |                |                              | (Black leaf spots, tuber rot)      |
|                                                        |                                   | Female         |                              |                                    |

| Arthropoda | Plasmodiun | Anopheles | Humans | Malaria fever |
|------------|------------|-----------|--------|---------------|
| _          |            | Anopheles |        |               |

Page 22 of 26

#### LIFECYCLES OF SELECTED PARASITES

| Lifecycle of Ascaris lumbricoides (roundworm)                         | Adaptations of Ascaris to parasitic life           |
|-----------------------------------------------------------------------|----------------------------------------------------|
| Adult female in lumen of ileum lays about 200,000 eggs daily,         | Degeneration of structures reduces space           |
| which are passed out in faeces.                                       | occupied.                                          |
| Fertile eggs embryonate and become infective after about three        | Possession of digestive-resistant cuticle resists  |
| weeks, (optimum conditions: moist, warm, shaded soil).                | destruction by the host's enzymes.                 |
| On being swallowed by humans, eggs hatch into larvae, which           | Ability to position itself in a habitat where it   |
| invade intestinal wall, and are carried via the portal, then systemic | gains maximum nourishment.                         |
| circulation to lungs.                                                 | Eggs have protective/resistant shell which is      |
| Larvae mature further in lungs (10 to 14 days), penetrate alveolar    | their main ineffective and resistant stage.        |
| walls, ascend the bronchi to the throat, and are swallowed into gut.  | Tolerance to oxygen deficient environment          |
| Upon reaching the ileum, they develop into adult worms.               | Ability to copulate within the intestines followed |
| Between 2 and 3 months are required from ingestion of the infective   | by the laying of very many eggs increases survival |
| eggs to <b>oviposition</b> by the adult female.                       | chances.                                           |
| Adult worms can live 1 to 2 years.                                    |                                                    |

| Lifecycle of Taenia sp. (Tapeworm)                                                                  | Adaptations of <i>Taenia</i> to parasitism |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Humans are the definitive hosts for T. saginata and T. solium.                                      | Has hooks and suckers for holding          |
| Eggs or gravid proglottids are passed out in faeces;                                                | tightly onto ileum wall.                   |
| Cattle ( <i>T. saginata</i> ) and pigs ( <i>T. solium</i> ) become infected by ingesting vegetation | Flattened body increases surface           |
| contaminated with eggs or gravid proglottids.                                                       | area for absorbing its host'sdigested      |
| In the animal'soncospheres intestine, hatch, invade the estimal the wall, and                       | food                                       |
| migrate to striated muscles, where they develop into cysticerci. A cysticercus can                  | Degeneration of structures reduces         |
| survive for several years in the animal. Humans become infected by ingesting                        | on space occupied.                         |
| raw or undercooked infected meat.                                                                   | Lays many eggs to increase survival        |
| In the human intestine, the cysticercus develops over 2 months into an adult                        | chances.                                   |
| tapeworm, which can survive for years.                                                              | Hooks for boring through the gut of        |
| Adult tapeworms attach and stay in small intestine by their scolex.                                 | the host                                   |
| The adults produce proglottids which mature, become gravid, detach from the                         | Eggs have a thick shell for resisting      |
| tapeworm, and migrate to the anus or are passed in the stool (approx 6 per day).                    | enzyme destruction.                        |
| The eggs contained in the gravid proglottids are released after the proglottids are                 | Being hermaphrodite increases              |
| passed with the feces.                                                                              | reproductive rate                          |

#### Hygienic practices for controlling endoparasites

Avoid eating infected under cooked meat

Through proper disposal of sewage which prevents these worms from spreading

Through cooking meat thoroughly for example prolonged heating destroys the tapeworm

bladders Regular deworming to flush the worm out of the wall of the intestines in faeces.

Through regular meat inspection before it is consumed by man.

By prohibition of the discharge of raw sewage into inland waters and seas.

#### PLASMODIUM - THE MALARIA CAUSING PARASITE

There are approximately 156 named species of *Plasmodium* which infect various species of vertebrates. Four species are considered true parasites of humans, as they utilize humans almost exclusively as a natural intermediate host: *P. falciparum*, *P. vivax*, *P. ovale* and *P. malariae*.

#### LIFE CYCLE OF PLASMODIUM

Malaria parasite life cycle involves **humans** as **intermediate** host and adult female **anopheles** mosquito as **definitive** host. During a blood meal, a malaria-infected female *Anopheles* mosquito releases **sporozoites** into human blood.

On reaching the liver, **sporozoites** infect liver cells and mature into **schizonts**, which rupture and release **merozoites**. After this initial replication in the liver (**exo-erythrocytic schizogony**), the parasites undergo asexual multiplication in the erythrocytes (**erythrocytic schizogony**).

**Merozoites** infect red blood cells, the ring stage **trophozoites** mature into **schizonts**, which rupture releasing **merozoites**. Some parasites differentiate into sexual **erythrocytic** stages (**gametocytes**).

Blood stage parasites are responsible for the clinical manifestations of the disease.

The gametocytes, male (**microgametocytes**) and female (**macrogametocytes**), are ingested by an *Anopheles* mosquito during a blood meal.

The parasites' multiplicationsporogonic cyclein. the mosquito is known

Page 23 of 26

While in the mosquito's**microgametes**penetratestothe**macrogametes**ach,the-**generating zygotes**. **Zygotes** become motile and elongated (ookinetes), invade the midgut wall of the mosquito to develop into **oocysts**.

**Oocysts** grow, rupture, and release **sporozoites**, which enter the mosquito's salivary glands. Inoculation of the **sporozoites** into a new human host perpetuates the malaria life cycle.

#### LIFE CYCLE OF PHYTOPHTHORA INFESTANS

*Phytophthora* produce two kinds of spore i.e. diploid **oospores**, formed sexually from fusion of haploid **antheridia** and **oogonia**, and **chlamydospores** formed asexually. Both types of spore have thick cell walls for surviving harsh conditions. Under cool wet conditions, *Phytophthora* spores (**oospores** or **chlamydospores**) germinate to form hyphae or directly produce sporangia.

Sporangia release free swimming **biflagellated zoospores**, which travel in moisture at the surface of leaves, and in soil. On reaching plant root or leaf surface a zoospore forms a cyst.

The encysted zoospore then germinates to form hyphae on the host surface, which penetrates plant leaf or root tissues to absorb nutrients.

After *Phytophthora* infects the plant, it produces **sporangia** and **zoospores** which further infect other tissues of the same plant or nearby plants.

Sexual reproduction occurs when positive and negative mating types are present.

Haploid nuclei of antheridium and oogonium fuse together when the antheridium enters the oogonium to form a diploid oospore, which develops into a sporangium and the cycle will continue as is would asexually.

#### SAPROTROPHISM (SAPROTROPHIC NUTRITION)

The process of obtaining soluble organic substances from extracellular digestion of dead or decayed organic matter. **Saprotroph**: An organism that absorbs soluble nutrients from extracellular digestion of dead/decaying organic matter.

#### **EXAMPLES OF SAPROTROPHS**

(i) Saprobes: fungi like mushrooms, yeasts and moulds

(*ii*) *Saprophytes*: **saprotrophic plants** e.g. sugar stick, gnome plant, Indian-pipe and **putrefying bacteria** which convert complex organic substances into simpler compounds e.g. **Zygomonas** bacterium ferments **glucose** producing **alcohol**, **lactic acid and carbon dioxide**, **Clostridium aceto-butylicum** forms **butyl alcohol** from **carbohydrates**, **Lactobacillus** converts **sugars** into **lactic acid**.

(iii) Saprophages: Animal scavengers, such as dung beetles and vultures

#### DESCRIPTION OF SAPROTROPHISM IN FUNGAL MOULD LIKE MUCOR/RHIZOPUS

Under suitable conditions (moisture / water, oxygen, neutral / mildly acidic pH, temperature of about 25 °C) the saprotroph secretes different enzymes into the dead animal/plant body; proteases, lipases, carbohydrases e.g. amylase which break down insoluble complex organic substances into simple soluble substances as follows:

#### -Proteases break down proteins into amino acids -

Lipases break down lipids into fatty acids and glycerol

-Carbohydrases e.g. Amylases break down starch into maltose/simple disaccharides

The end products of extra-cellular digestion such as **fatty acids** and **glycerol**, **glucose**, **amino acids** plus other nutrients like **vitamins** e.g. **thiamine** and **ions** e.g. **potassium**, **phosphorus**, **and magnesium** are re-absorbed into the hypha through the cell wall by **endocytosis / simple diffusion / facilitated diffusion / active transport** and passed on throughout the mycelium complex to enable growth and repair.

#### COMPARISON OF SAPROPHYTES WITH PARASITES

#### Similarities

Both: (1) are heterotrophs (2) absorb soluble food (3) have simple digestive systems (4) have sexual and asexual phases in their reproduction (5) produce large numbers of offspring.

| Differences                  | G 1 (                              |
|------------------------------|------------------------------------|
| Parasites                    | Saprophytes                        |
| Energy derived from living   | Energy derived from dead           |
| organisms                    | Organisms                          |
| Many stages in lifecycle     | Usually a single adult stage, with |
|                              | spores inclusive                   |
| Very specific to their host  | Use a variety of food sources      |
| Nutritionally highly adapted | Simple methods of nutrition        |
| 5051                         | 1 1                                |

### **IMPORTANCE OF SAPROPHYTES**

Recycling of materials e.g. carbon, nitrogen, phosphorus Brewing and baking e.g. yeast (*Saccharomyces*) Making antibiotics e.g. Penicillin Decomposition of wastes e.g. sewage

Almost totally fungi and bacteria

Anaerobic and aerobic

Production of yoghurt and cheese Food source e.g. mushrooms Industrial applications e.g. leather tanning, production of vitamins, etc.